A Lightweight Method for Vehicle Classification Based on Improved Binarized Convolutional Neural Network

Author:

Zhang Bangyuan,Zeng Kai

Abstract

Vehicle classification is an important part of intelligent transportation. Owing to the development of deep learning, better vehicle classification can be achieved compared to traditional methods. Contemporary deep network models have huge computational scales and require a large number of parameters. Binarized convolutional neural networks (CNNs) can effectively reduce model computational size and the number of parameters. Most contemporary lightweight networks are binarized directly on a full-precision model, leading to shortcomings such as gradient mismatch or serious accuracy degradation. To addresses the inherent defects of binarization networks, herein, we adjust and improve residual blocks and propose a new pooling method, which is called absolute value maximum pooling (Abs-MaxPooling). The information entropy after weight binary quantization is used to propose a weight distribution binary quantization method. A binarized CNN-based vehicle classification model is constructed, and the weights and activation values of the model are quantified to 1 bit, which saves data storage space and improves classification accuracy. The proposed binarized model performs well on the BIT-Vehicle dataset and outperforms some full-precision models.

Funder

National Natural Science Foundation of China

Yunnan Reserve Talents of Young and Middle-aged Academic and Technical Leaders

Major Science and Technology Projects in Yunnan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference22 articles.

1. Very deep convolutional networks for large-scale image recognition;Simonyan;arXiv,2014

2. Deep residual learning for image recognition;He;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016

3. BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or −1;Courbariaux;arXiv,2016

4. Towards accurate binary convolutional neural network;Lin;Proceedings of the Advances in Neural Information Processing Systems,2017

5. How to train a compact binary neural network with high accuracy?;Tang;Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3