Reduction of Spurious Signal Upconversion in Frequency Multipliers

Author:

Szczepaniak ZenonORCID,Rogala TomaszORCID

Abstract

Usually many applications of radar transceivers and heterodyne frequency synthesizers assume a spurious signal power level below −60 dBc. In the case of modern synthesizers using direct digital synthesis (DDS) systems, the number of emerging spurious signal frequencies is very large, and spectral purity within −60 dBc can only be obtained in the relatively narrow tuning band of the DDS unit. For the purposes of widening this useful frequency range, the frequency multiplying operation is applied commonly. Then, during the process of frequency multiplication of the baseband signal containing inband spurious signals, the effect of the upconversion of spurious signals occurs. The paper contains an analysis of the undesirable effects of the conversion of spurious signal frequencies accompanying the process of frequency multiplication. A method of reducing the level of upconverted spurious signals is proposed. The numerical calculations and measurement results are provided. For the case of a frequency multiplier with a multiplying factor equal to N, the power ratio between the desired output signal and upconverted spurious signal drops by an additional 1/N2. It has been found that the application of the presented method during the design process of the frequency multiplier allows this ratio to be improved by 6 dB.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3