Abstract
Accurate large signal GaAs pHEMT models are essential for devices’ performance analysis and microwave circuit design. This, in turn, mandates precise small signal models. However, the accuracy of small signal models strongly depends on reliable parasitic parameter extraction of GaAs pHEMT, which also greatly influences the extraction of intrinsic elements. Specifically, the parasitic source and drain resistances, R s and R d , are gate bias-dependent, due to the two-dimensional charge variations. In this paper, we propose a new method to extract R s and R d directly from S-parameter measurements of the device under test (DUT), which save excessive measurements and complicated parameter extraction. We have validated the proposed method in both simulation and on-wafer measurement, which achieves better accuracy than the existing state-of-the-art in a frequency range of 0.5–40 GHz. Furthermore, we develop a GaAs pHEMT power amplifier (PA) to further validate the developed model. The measurement results of the PA at 9–15 GHz agree with the simulation results using the proposed model.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献