Secure Mobile Edge Server Placement Using Multi-Agent Reinforcement Learning

Author:

Kasi Mumraiz Khan,Abu Ghazalah Sarah,Akram Raja NaeemORCID,Sauveron DamienORCID

Abstract

Mobile edge computing is capable of providing high data processing capabilities while ensuring low latency constraints of low power wireless networks, such as the industrial internet of things. However, optimally placing edge servers (providing storage and computation services to user equipment) is still a challenge. To optimally place mobile edge servers in a wireless network, such that network latency is minimized and load balancing is performed on edge servers, we propose a multi-agent reinforcement learning (RL) solution to solve a formulated mobile edge server placement problem. The RL agents are designed to learn the dynamics of the environment and adapt a joint action policy resulting in the minimization of network latency and balancing the load on edge servers. To ensure that the action policy adapted by RL agents maximized the overall network performance indicators, we propose the sharing of information, such as the latency experienced from each server and the load of each server to other RL agents in the network. Experiment results are obtained to analyze the effectiveness of the proposed solution. Although the sharing of information makes the proposed solution obtain a network-wide maximation of overall network performance at the same time it makes it susceptible to different kinds of security attacks. To further investigate the security issues arising from the proposed solution, we provide a detailed analysis of the types of security attacks possible and their countermeasures.

Funder

King Khaled University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3