RESP: A Recursive Clustering Approach for Edge Server Placement in Mobile Edge Computing

Author:

Vali Ali Akbar1ORCID,Azizi Sadoon1ORCID,Shojafar Mohammad2ORCID

Affiliation:

1. Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran (the Islamic Republic of)

2. ICS/5GIC, University of Surrey, Guildford, United Kingdom of Great Britain and Northern Ireland

Abstract

With the rapid advancement of the Internet of Things and 5G networks in smart cities, the inevitable generation of massive amounts of data, commonly known as big data, has introduced increased latency within the traditional cloud computing paradigm. In response to this challenge, Mobile Edge Computing (MEC) has emerged as a viable solution, offloading a portion of mobile device workloads to nearby edge servers equipped with ample computational resources. Despite significant research in MEC systems, optimizing the placement of edge servers in smart cities to enhance network performance has received little attention. In this article, we propose RESP , a novel Recursive clustering technique for Edge Server Placement in MEC environments. RESP operates based on the median of each cluster determined by the number of base transceiver stations, strategically placing edge servers to achieve workload balance and minimize network traffic between them. Our proposed clustering approach substantially improves load balancing compared to existing methods and demonstrates superior performance in handling traffic dynamics. Through experimental evaluation with real-world data from Shanghai Telecom’s base station dataset, our approach outperforms several representative techniques in terms of workload balancing and network traffic optimization. By addressing the ESP problem and introducing an advanced recursive clustering technique, this work makes a substantial contribution to optimizing mobile edge computing networks in smart cities. The proposed algorithm outperforms alternative methodologies, demonstrating a 10% average improvement in optimizing network traffic. Moreover, it achieves a 53% more suitable result in terms of computational load.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3