Author:
Gu Kai,Zhang Yu,Liu Xiaobo,Li Heng,Ren Mifeng
Abstract
Bearings are widely used in many steam turbine generator sets and other large rotating equipment. With the rapid development of contemporary industry, there is a great number of rotating equipment in various large factories, such as nuclear power plants. As the core component of rotating machinery, the failure of rolling bearings may lead to serious accidents during the industrial production operation. In order to accurately diagnose the fault status of rolling bearings, a novel long short-term memory (LSTM) model with discrete wavelet transformation (DWT) for multi-sensor fault diagnosis is proposed in this paper. The main purpose of this paper is to use the DWT-LSTM model to diagnose the health of rolling bearings. Firstly, the DWT is used to obtain detailed fault information in both different frequency and time scales. Then, the LSTM network is employed to characterize the long-term dependencies hidden in the time series of the fault information. The proposed DWT-LSTM method makes full use of the advantages of feature extraction based on expert experience and deep network learning to discover complex patterns from a large amount of data. Finally, the feasibility and efficiency of the proposed method are illustrated by comparison with the existing methods.
Funder
Shanxi Provincial Key Research and Development Project
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献