Adjusting the Block Interval in PoW Consensus by Block Interval Process Improvement

Author:

Kim HeesangORCID,Kim DohoonORCID

Abstract

Blockchain is not widely applied in various fields due to the critical issue of scalability as part of the blockchain trilemma. This issue arises during consensus among the nodes in a public blockchain. To address the issue of low scalability with proof-of-work (PoW) consensus, various methods have been proposed for transaction per second (TPS) improvement. However, no such methods include an improvement in the consensus step. Therefore, to improve PoW public blockchain scalability, it is important to shorten the time required for PoW consensus. This paper proposes a method for minimizing the block intervals that occur during consensus over a PoW blockchain network. A shortened block interval leads to an increase in the probability of three different attacks: selfish mining, double-spending, and eclipse attacks. According to an experiment using Ethereum, with a typical PoW blockchain, it is inevitable to provide rewards for stable block mining in competition between mining pools. To find an optimal block interval in the PoW consensus algorithm, we conducted a four-step experiment. The purpose of this experiment was to verify the difficulty level and issues with Mainnet security. Therefore, considering stale block mining rewards, an optimal block interval is proposed. The Ethereum TPS was improved by at least 200%. Given this finding, it is considered possible to achieve a similar improvement in a different PoW blockchain. On balance, even if the block interval is shorter than that of the PoW Mainnet, network security falls by only 1.21% in Testnet, even with a rise in the stale block rate, while performance is increased at up to 120 TPS, which is three times higher than that in Mainnet.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference24 articles.

1. Bitcoin: A Peer-to-Peer Electronic Cash System Bitcoin https://bitcoin.org/en/bitcoin-paper

2. Solutions to Scalability of Blockchain: A Survey

3. Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3