Unsupervised Feature Learning for Speech Emotion Recognition Based on Autoencoder

Author:

Ying YangweiORCID,Tu Yuanwu,Zhou Hong

Abstract

Speech signals contain abundant information on personal emotions, which plays an important part in the representation of human potential characteristics and expressions. However, the deficiency of emotion speech data affects the development of speech emotion recognition (SER), which also limits the promotion of recognition accuracy. Currently, the most effective approach is to make use of unsupervised feature learning techniques to extract speech features from available speech data and generate emotion classifiers with these features. In this paper, we proposed to implement autoencoders such as a denoising autoencoder (DAE) and an adversarial autoencoder (AAE) to extract the features from LibriSpeech for model pre-training, and then conducted experiments on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) datasets for classification. Considering the imbalance of data distribution in IEMOCAP, we developed a novel data augmentation approach to optimize the overlap shift between consecutive segments and redesigned the data division. The best classification accuracy reached 78.67% (weighted accuracy, WA) and 76.89% (unweighted accuracy, UA) with AAE. Compared with state-of-the-art results to our knowledge (76.18% of WA and 76.36% of UA with the supervised learning method), we achieved a slight advantage. This suggests that using unsupervised learning benefits the development of SER and provides a new approach to eliminate the problem of data scarcity.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3