Emotion Recognition from Facial Expression Based on Fiducial Points Detection and using Neural Network

Author:

Salmam Fatima Zahra,Madani Abdellah,Kissi Mohamed

Abstract

The importance of emotion recognition lies in the role that emotions play in our everyday lives. Emotions have a strong relationship with our behavior. Thence, automatic emotion recognition, is to equip the machine of this human ability to analyze, and to understand the human emotional state, in order to anticipate his intentions from facial expression. In this paper, a new approach is proposed to enhance accuracy of emotion recognition from facial expression, which is based on input features deducted only from fiducial points. The proposed approach consists firstly on extracting 1176 dynamic features from image sequences that represent the proportions of euclidean distances between facial fiducial points in the first frame, and faicial fiducial points in the last frame. Secondly, a feature selection method is used to select only the most relevant features from them. Finally, the selected features are presented to a Neural Network (NN) classifier to classify facial expression input into emotion. The proposed approach has achieved an emotion recognition accuracy of 99% on the CK+ database, 84.7% on the Oulu-CASIA VIS database, and 93.8% on the JAFFE database.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emotional detection system using machine learning;AIP Conference Proceedings;2024

2. Enhancing facial expression recognition through generative adversarial networks-based augmentation;International Journal of System Assurance Engineering and Management;2023-10-21

3. Hyper-Enhanced Feature Learning System for Emotion Recognition;Signal Processing in Medicine and Biology;2023

4. Movie Reviews Classification through Facial Image Recognition and Emotion Detection Using Machine Learning Methods;Symmetry;2022-12-09

5. On the Evaluation and Implementation of LSTM Model for Speech Emotion Recognition Using MFCC;Proceedings of International Conference on Computational Intelligence and Data Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3