Simple Modeling and Analysis of Total Ionizing Dose Effects on Radio-Frequency Low-Noise Amplifiers

Author:

Kim Taeyeong1ORCID,Ryu Gyungtae2,Lee Jongho1ORCID,Cho Moon-Kyu3,Fleetwood Daniel M.4ORCID,Cressler John. D.5,Song Ickhyun6ORCID

Affiliation:

1. Department of Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea

2. Division of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea

3. Department of Computer Engineering, Korea National University of Transportation, Chungju-si 27469, Republic of Korea

4. Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA

5. Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

6. Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea

Abstract

In this study, the degradation characteristics of radio frequency (RF)-low-noise amplifiers (LNA) due to a total ionizing dose (TID) is investigated. As a device-under-test (DUT), sample LNAs were prepared using silicon–germanium (SiGe) heterojunction bipolar transistors (HBTs) as core elements. The LNA was based on a cascode stage with emitter degeneration for narrowband applications. By using a simplified small-signal model of a SiGe HBT, design equations such as gain, impedance matching, and noise figure (NF) were derived for analyzing TID-induced degradations in the circuit-level performance. To study radiation effects in circuits, the SiGe-RF-LNAs fabricated in a commercial 350 nm SiGe technology were exposed to 10-keV X-rays to a total ionizing dose of up to 3 Mrad(SiO2). The TID-induced performance changes of the LNA were modeled by applying degradation to device parameters. In the modeling process, new parameter values after irradiation were estimated based on information in the literature, without direct measurements of SiGe HBTs used in the LNA chip. As a result, the relative contributions of parameters on the circuit metrics were compared, identifying dominant parameters for degradation modeling. For the TID effects on input matching (S11) and NF, the base resistance (RB) and the base-to-emitter capacitance (Cπ) of the input transistor were mostly responsible, whereas the transconductances (gm) played a key role in the output matching (S22) and gain (S21). To validate the proposed approach, it has been applied to a different LNA in the literature and the modeling results predicted the TID-induced degradations within reasonable ranges.

Funder

National Research Foundation of Korea

Institute of Information and Communications Technology Planning and Evaluation

Ministry of Education

C Design Education Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3