Self-Constructed Deep Fuzzy Neural Network for Traffic Flow Prediction

Author:

An Jiyao1ORCID,Zhao Jin1,Liu Qingqin1,Qian Xinjiao1,Chen Jiali1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China

Abstract

Traffic flow prediction is a critical component of intelligent transportation systems, especially in the prevention of traffic congestion in urban areas. While significant efforts have been devoted to enhancing the accuracy of traffic prediction, the interpretability of traffic prediction also needs to be considered to enhance persuasiveness, particularly in the era of deep-learning-based traffic cognition. Although some studies have explored interpretable neural networks from the feature and result levels, model-level explanation, which explains the reasoning process of traffic prediction through transparent models, remains underexplored and requires more attention. In this paper, we propose a novel self-constructed deep fuzzy neural network, SCDFNN, for traffic flow prediction with model interpretability. By leveraging recent advances in neuro-symbolic computation for automatic rule learning, SCDFNN learns interpretable human traffic cognitive rules based on deep learning, incorporating two innovations: (1) a new fuzzy neural network hierarchical architecture constructed for spatial-temporal dependences in the traffic feature domain; (2) a modified Wang–Mendel method used to fuse regional differences in traffic data, resulting in adaptive fuzzy-rule weights without sacrificing interpretability. Comprehensive experiments on well-known traffic datasets demonstrate that the proposed approach is comparable to state-of-the-art deep models, and the SCDFNN’s unique hierarchical architecture allows for transparency.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province, China

Hunan Xiangjiang Artificial Intelligence Academy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3