A Family of Automatic Modulation Classification Models Based on Domain Knowledge for Various Platforms

Author:

Wei Shengyun1ORCID,Wang Zhenyi1ORCID,Sun Zhaolong2ORCID,Liao Feifan1ORCID,Li Zhen1ORCID,Zou Li1ORCID,Mi Haibo1ORCID

Affiliation:

1. College of Information and Communication, National University of Defense Technology, Wuhan 430000, China

2. School of Electrical Engineering, Naval University of Engineering, Wuhan 430000, China

Abstract

Identifying the modulation type of radio signals is challenging in both military and civilian applications such as radio monitoring and spectrum allocation. This has become more difficult as the number of signal types increases and the channel environment becomes more complex. Deep learning-based automatic modulation classification (AMC) methods have recently achieved state-of-the-art performance with massive amounts of data. However, existing models struggle to achieve the required level of accuracy, guarantee real-time performance at edge devices, and achieve higher classification performance on high-performance computing platforms when deployed on various platforms. In this paper, we present a family of AMC models based on communication domain knowledge for various computing platforms. The higher-order statistical properties of signals, customized data augmentation methods, and narrowband convolution kernels are the domain knowledge that is specifically employed to the AMC task and neural network backbone. We used separable convolution and depth-wise convolution with very few residual connections to create our lightweight model, which has only 4.61k parameters while maintaining accuracy. On the four different platforms, the classification accuracy and inference time outperformed those of the existing lightweight models. Meanwhile, we use the squeeze-and-excitation attention mechanism, channel shuffle module, and expert feature parallel branch to improve the classification accuracy. On the three most frequently used benchmark datasets, the high-accuracy models achieved state-of-the-art average accuracies of 64.63%, 67.22%, and 65.03%, respectively. Furthermore, we propose a generic framework for evaluating the complexity of deep learning models and use it to comprehensively assess the complexity strengths of the proposed models.

Funder

National Key R&D Program of China

Scientific Research Plan of the National University of Defense Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Modulation Classification for NLOS 5G Signals with Deep Learning Approaches;2023 10th International Conference on Wireless Networks and Mobile Communications (WINCOM);2023-10-26

2. Development of Chest X-ray Image Evaluation Software Using the Deep Learning Techniques;Applied Sciences;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3