Optimization of Ohmic Contact to Ultrathin-Barrier AlGaN/GaN Heterostructure via an ‘Ohmic-Before-Passivation’ Process

Author:

Ji Yuan12ORCID,Huang Sen12ORCID,Jiang Qimeng1,Zhang Ruizhe12,Fan Jie1,Yin Haibo12,Zheng Yingkui12,Wang Xinhua12,Wei Ke12,Liu Xinyu12

Affiliation:

1. Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China

2. University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

Non-recessed ohmic contact resistance (Rc) on ultrathin-barrier (UTB) AlGaN(<6 nm)/GaN heterostructure was effectively reduced to a low value of 0.16 Ω·mm. The method called the ‘ohmic-before-passivation’ process was adopted to eliminate the effects of fluorine plasma etching, in which an alloyed Ti/Al/Ni/Au ohmic metal stack was formed prior to passivation. The recovery of 2-D Electron Gas (2DEG) adjacent to the ohmic contact was enhanced by composite double-layer dielectric with AlN/SiNx passivation. It is found that the separation between the recovered 2DEG and the ohmic contacting edge can be remarkably reduced, contributing to a reduced transfer length (LT) and low Rc, as compared to that of ohmic contact to the AlGaN(~20 nm)/GaN heterostructure with a pre-ohmic recess process. Thermionic field emission is verified to be the dominant ohmic contact mechanism by temperature-dependent current-voltage measurements. The low on-resistance of 3.9 Ω·mm and the maximum current density of 750 mA/mm with Vg = 3 V were achieved on the devices with the optimized ohmic contact. The non-recessed ohmic contact with the ‘ohmic-before-passivation’ process is a promising strategy to optimize the performance of low-voltage GaN-based power devices.

Funder

National Key Research and Development Program of China

CAS-Croucher Funding Scheme

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3