Abstract
Devices used in Internet of Things (IoT) networks continue to perform sensing, gathering, modifying, and forwarding data. Since IoT networks have a lot of participants, mitigating and reducing collisions among the participants becomes an essential requirement for the Medium Access Control (MAC) protocols to increase system performance. A collision occurs in wireless channel when two or more nodes try to access the channel at the same time. In this paper, a reinforcement learning-based MAC protocol was proposed to provide high throughput and alleviate the collision problem. A collaboratively predicted Q-value was proposed for nodes to update their value functions by using communications trial information of other nodes. Our proposed protocol was confirmed by intensive system level simulations that it can reduce convergence time in 34.1% compared to the conventional Q-learning-based MAC protocol.
Funder
National Research Foundation of Korea
Ministry of Oceans and Fisheries
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献