Improving the Performance of ALOHA with Internet of Things Using Reinforcement Learning

Author:

Acik Sami1,Kosunalp Selahattin2,Tabakcioglu Mehmet Baris3,Iliev Teodor4ORCID

Affiliation:

1. Department of Electrical-Electronics Engineering, Faculty of Engineering and Natural Sciences, University of Gaziantep Islam Science and Technology, Gaziantep 27010, Türkiye

2. Department of Computer Technologies, Gönen Vocational School, Bandirma Onyedi Eylül University, Bandirma 10200, Türkiye

3. Department of Electrical-Electronics Engineering, Faculty of Engineering and Natural Sciences, University of Bursa Technical, Bursa 16310, Türkiye

4. Department of Telecommunication, University of Ruse, 7017 Ruse, Bulgaria

Abstract

Intelligent medium access control (MAC) protocols have been a vital solution in enhancing the performance of a variety of wireless networks. ALOHA, as the first MAC approach, inspired the development of several MAC schemes in the network domain, with the primary advantage of simplicity. In this article, we present design, implementation, and performance evaluations of the ALOHA approach, through significant improvements in attaining high channel utilization as the most important performance metric. A critical emphasis is currently focused on removing the burden of packet collisions, while satisfying requirements of energy and delay criteria. We first implement the ALOHA protocol to practically explore its performance behaviors in comparison to analytical models. We then introduce the concept of dynamic payload instead of fixed-length packets, whereby a dynamic selection of the length of each transmitted packet is employed. Another specific contribution of this paper is the integration of the transmission policy of ALOHA with the potential of Internet of Things (IoT) opportunities. The proposed policy utilizes a state-less Q-learning strategy to achieve the maximum performance efficiency. Performance outputs prove that the proposed idea ensures a maximum throughput of approximately 58%, while ALOHA is limited to nearly 18% over a single-hop scenario.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3