Abstract
With recent advancements in the classification methods of various domains, deep learning has shown remarkable results over traditional neural networks. A compact convolutional neural network (CNN) model with reduced computational complexity that performs equally well compared to the pretrained ResNet-101 model was developed. This three-layer CNN model was developed for plant leaf classification in this work. The classification of disease in tomato plant leaf images of the healthy and disease classes from the PlantVillage (PV) database is discussed in this work. Further, it supports validating the models with the images taken at “Krishi Vigyan Kendra Narayangaon (KVKN),” Pune, India. The disease categories were chosen based on their prevalence in Indian states. The proposed approach presents a performance improvement concerning other state-of-the-art methods; it achieved classification accuracies of 99.13%, 99.51%, and 99.40% with N1, N2, and N3 models, respectively, on the PV dataset. Experimental results demonstrate the validity of the proposed approach under complex background conditions. For the images captured at KVKN for predicting tomato plant leaf disease, the validation accuracy was 100% for the N1 model, 98.44% for the N2 model, and 96% for the N3 model. The training time for the developed N2 model was reduced by 89% compared to the ResNet-101 model. The models developed are smaller, more efficient, and less time-complex. The performance of the developed model will help us to take a significant step towards managing the infected plants. This will help farmers and contribute to sustainable agriculture.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference54 articles.
1. An efficient employment of internet of multimedia things in smart and future agriculture
2. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features;Arivazhagan;Agric. Eng. Int. CIGR J.,2013
3. A Framework for Detection and Classification of Plant Leaf and Stem Diseases;Al Bashish;Proceedings of the International Conference on Signal and Image Processing,2010
4. Deep learning models for plant disease detection and diagnosis
5. How deep learning extracts and learns leaf features for plant classification
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献