Author:
Uppada Rajyalakshmi,Kumar D. V. A. N. Ravi
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Signal Processing
Reference31 articles.
1. Wäldchen, J., Patrick, M.: Plant species identification using computer vision techniques: a systematic literature review. Arch. Computat. Eng. 25, 507–543 (2016)
2. Patel, V., Kakarla, S.C., Ampatzidis, Y.: Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 157, 339–350 (2018)
3. Tejeda, A.I., Castro, R.C.: Algorithm of weed detection in crops by computational vision. In: IEEE International Conference on Electronics, Communications and Computers, pp.124–128 (2019)
4. Suryawati, E., Sustika, R., Yuwana, R.S., Subekti, A., Pardede, H.F.: ‘Deep structured convolutional neural network for tomato diseases detection. In: Proc. Int. Conf. Adv. Comput. Sci. Inf. Syst. (ICACSIS), pp. 385–390 (2018)
5. Trivedi, N.K., Gautam, V., Anand, A., Aljahdali, H.M., Villar, S.G., Anand, D., Goyal, N., Kadry, S.: Early detection and classification of tomato leaf disease using high-performance deep neural network. Sensors 21(23), 7987 (2021)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tomato leaf disease detection and management using VARMAx-CNN-GAN integration;Journal of King Saud University - Science;2024-09
2. Tomato ripeness detection based on image recognition;International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024);2024-06-13
3. Image change combined with CNN power subway vent valve state monitoring;Signal, Image and Video Processing;2024-01-25