Abstract
This paper proposes a novel coordinated multi-agent deep reinforcement learning (MADRL) algorithm for energy sharing among multiple unmanned aerial vehicles (UAVs) in order to conduct big-data processing in a distributed manner. For realizing UAV-assisted aerial surveillance or flexible mobile cellular services, robust wireless charging mechanisms are essential for delivering energy sources from charging towers (i.e., charging infrastructure) to their associated UAVs for seamless operations of autonomous UAVs in the sky. In order to actively and intelligently manage the energy resources in charging towers, a MADRL-based coordinated energy management system is desired and proposed for energy resource sharing among charging towers. When the required energy for charging UAVs is not enough in charging towers, the energy purchase from utility company (i.e., energy source provider in local energy market) is desired, which takes high costs. Therefore, the main objective of our proposed coordinated MADRL-based energy sharing learning algorithm is minimizing energy purchase from external utility companies to minimize system-operational costs. Finally, our performance evaluation results verify that the proposed coordinated MADRL-based algorithm achieves desired performance improvements.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献