JO-TADP: Learning-Based Cooperative Dynamic Resource Allocation for MEC–UAV-Enabled Wireless Network

Author:

Ahmad Shabeer1ORCID,Zhang Jinling1,Khan Adil1ORCID,Khan Umar Ajaib2,Hayat Babar1

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts & Telecommunications, Beijing 100876, China

2. School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

Providing robust communication services to mobile users (MUs) is a challenging task due to the dynamicity of MUs. Unmanned aerial vehicles (UAVs) and mobile edge computing (MEC) are used to improve connectivity by allocating resources to MUs more efficiently in a dynamic environment. However, energy consumption and lifetime issues in UAVs severely limit the resources and communication services. In this paper, we propose a dynamic cooperative resource allocation scheme for MEC–UAV-enabled wireless networks called joint optimization of trajectory, altitude, delay, and power (JO-TADP) using anarchic federated learning (AFL) and other learning algorithms to enhance data rate, use rate, and resource allocation efficiency. Initially, the MEC–UAVs are optimally positioned based on the MU density using the beluga whale optimization (BLWO) algorithm. Optimal clustering is performed in terms of splitting and merging using the triple-mode density peak clustering (TM-DPC) algorithm based on user mobility. Moreover, the trajectory, altitude, and hovering time of MEC–UAVs are predicted and optimized using the self-simulated inner attention long short-term memory (SSIA-LSTM) algorithm. Finally, the MUs and MEC–UAVs play auction games based on the classified requests, using an AFL-based cross-scale attention feature pyramid network (CSAFPN) and enhanced deep Q-learning (EDQN) algorithms for dynamic resource allocation. To validate the proposed approach, our system model has been simulated in Network Simulator 3.26 (NS-3.26). The results demonstrate that the proposed work outperforms the existing works in terms of connectivity, energy efficiency, resource allocation, and data rate.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3