Proton Radiation Effects of CMOS Image Sensors on Different Star Map Recognition Algorithms for Star Sensors

Author:

Cui Yihao123,Feng Jie12,Li Yudong12,Wen Lin12,Guo Qi12

Affiliation:

1. Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China

2. Xinjiang Key Laboratory of Electronic Information Material and Device, Urumqi 830011, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Star sensors are widely used by satellites for their precise pointing accuracy. However, protons in space will cause cumulative effects and single-event transients in the imaging systems of star sensors. These effects will affect the success rate of star map recognition of star sensors. In this paper, proton irradiation experiments and field tests were carried out in turn, and three typical star recognition algorithms were used to recognize the star maps. The results showed that cumulative effects led to a decrease in the number of identifiable stars, which greatly affected the recognition success rate of the grid algorithm. Hot pixels caused by displacement damage effects increased the star centroid positioning error, leading to a decrease in the recognition success rate of the triangle algorithm and pyramid algorithm. Single-event transients produced by protons hitting the image sensor are similar to the grayscale value and shape of a star, and were recognized as “false stars”, which had a significant impact on the success rate of the three recognition algorithms. In general, the pyramid algorithm was more effective than the other two algorithms in identifying the affected star map, and the recognition success rate of the grid algorithm was significantly reduced.

Funder

National Natural Science Foundation of China

West Light Talent Training Plan of the Chinese Academy of Sciences

Youth Science and Technology Talents Project of Xinjiang Uygur Autonomous Region

Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3