GFNet: A Deep Learning Framework for Breast Mass Detection

Author:

Yu Xiang1,Zhu Ziquan1,Alon Yoav1,Guttery David S.2ORCID,Zhang Yudong134ORCID

Affiliation:

1. School of Computing and Mathematical Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK

2. Leicester Cancer Research Centre, University of Leicester, University Road, Leicester LE2 7LX, UK

3. School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China

4. Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Background: Breast mass is one of the main symptoms of breast cancer. Effective and accurate detection of breast masses at an early stage would be of great value for clinical breast cancer analysis. Methods: We developed a novel mass detection framework named GFNet. The GFNet is comprised of three modules, including patch extraction, feature extraction, and mass detection. The developed breast mass detection framework is of high robustness and generality that can be self-adapted to images collected by different imaging devices. The patch-based detection is deployed to improve performance. A novel feature extraction technique based on gradient field convergence features (GFCF) is proposed to enhance the information of breast mass and, therefore, provide useful information for the following patch extraction module. A novel false positives reduction method is designed by combining the texture and morphological features in breast mass patch. This is the first attempt at fusing morphological and texture features for breast mass false positive reduction. Results: Compared to other state-of-the-art methods, the proposed GFNet showed the best performance on CBIS-DDSM and INbreast with an accuracy of 0.90 at 2.91 false positive per image (FPI) and 0.99 at only 0.97 FPI, respectively. Conclusions: The GFNet is an effective tool for detecting breast mass.

Funder

MRC, UK

Royal Society, UK

BHF, UK

the Hope Foundation for Cancer Research, UK

GCRF, UK

Sino-UK Industrial Fund, UK

LIAS, UK

the Data Science Enhancement Fund, UK

the Fight for Sight, UK

the Sino-UK Education Fund

BBSRC, UK

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3