Publisher
Springer Nature Switzerland
Reference33 articles.
1. Agarwal, R., Díaz, O., Yap, M.H., Lladó, X., Martí, R.: Deep learning for mass detection in full field digital mammograms. Comput. Biol. Med. 121, 103774 (2020)
2. Cao, Z., et al.: Deep learning based mass detection in mammograms. In: 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1–5 (2019)
3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE CVPR 2009, pp. 248–255. IEEE (2009)
4. Dengler, J., Behrens, S., Desaga, J.: Segmentation of microcalcifications in mammograms. IEEE Trans. Med. Imaging 12(4), 634–642 (1993)
5. Dosovitskiy, A., et al.: An image is worth 16$$\,\times \,$$16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)