Health Indicator Similarity Analysis-Based Adaptive Degradation Trend Detection for Bearing Time-to-Failure Prediction

Author:

Chen Zhipeng1,Zhu Haiping1ORCID,Fan Liangzhi2,Lu Zhiqiang1

Affiliation:

1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200, China

Abstract

Time-to-failure (TTF) prediction of bearings is vital to the prognostic and health management of rotating machines. Owing to the shifty degradation trends (DTs) of bearings, it is still difficult to obtain accurate TTF prognostic results. To solve this problem, this paper proposes an online, continuously updated TTF prognostic method based on health indicator (HI) similarity analysis and DT detection. First, multiple degradation features are extracted and fused to construct principal component HI by using dynamic principal component analysis. Next, exponential degradation models are fitted using the HI values for future state prediction. By regarding several HI values as a tested segment, the DT is detected by analyzing the similarity of the tested segment and the fitted curve. Finally, TTF is predicted by extrapolating the DT to hit the estimated failure threshold. Two case studies based on public bearing datasets demonstrate the superiority of the proposed approach over state-of-the-art methods.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Hubei Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3