Efficient GaN-on-Si Power Amplifier Design Using Analytical and Numerical Optimization Methods for 24–30 GHz 5G Applications

Author:

Peng Lin1ORCID,Zhang Zhihao2ORCID,Zhang Gary2

Affiliation:

1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China

Abstract

This paper presents the design procedure of an efficient compact monolithic microwave integrated circuit power amplifier (MMIC PA) in a 0.1 μm GaN-on-Si process for 5G millimeter-wave communication. Load/source-pull simulations were conducted to correctly create equivalent large-signal matching models for stabilized power cells and to determine the optimal impedance domain. The shorted stub with bypass capacitors minimizes the transistor’s output reactance, simplifying the matching objective to an approximate real impedance transformation (IT). With miniaturization as the implementation guide, explicit formulas and tabulated methods based on mathematical analysis were applied to synthesize the filtering matching networks (MNs) for the input and output stages. In addition, a CAD-dependent numerical optimization approach was used for the interstage MN that needs to cope with high IT ratio and complex loads. The continuous-wave (CW) characterization for the proposed two-stage PA demonstrated 19.8 ± 0.7 dB of small-signal gain, very flat output power (Pout) and power-added efficiency (PAE) at 4 dB gain compression of 32–32.4 dBm and 34–34.6%, respectively, over 24–30 GHz, with 37.1% of peak PAE at mid-frequency.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3