Affiliation:
1. Department of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. Department of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract
We aimed to research the design and path-planning methods of an intelligent disinfection-vehicle system. A ROS (robot operating system) system was utilized as the control platform, and SLAM (simultaneous localization and mapping) technology was used to establish an indoor scene map. On this basis, a new path-planning method combining the A* algorithm and the Floyd algorithm is proposed to ensure the safety, efficiency, and stability of the path. Simulation results show that with the average shortest distance between obstacles and paths of 0.463, this algorithm reduces the average numbers of redundant nodes and turns in the path by 70.43% and 31.1%, respectively, compared to the traditional A* algorithm. The algorithm has superior performance in terms of safety distance, path length, and redundant nodes and turns. Additionally, a mask recognition and pedestrian detection algorithm is utilized to ensure public safety. The results of the study indicate that the method has satisfactory performance. The intelligent disinfection-vehicle system operates stably, meets the indoor mapping requirements, and can recognize pedestrians and masks.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
Jiangxi Postgraduate Innovation Special Fund Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献