A Localization and Mapping Algorithm Based on Improved LVI-SAM for Vehicles in Field Environments

Author:

Han Lanyi1ORCID,Shi Zhiyong1,Wang Huaiguang1

Affiliation:

1. Department of Vehicle and Electrical Engineering, Army Engineering University of PLA, Shijiazhuang 050003, China

Abstract

Quickly grasping the surrounding environment’s information and the location of the vehicle is the key to achieving automatic driving. However, accurate and robust localization and mapping are still challenging for field vehicles and robots due to the characteristics of emptiness, terrain changeability, and Global Navigation Satellite System (GNSS)-denied in complex field environments. In this study, an LVI-SAM-based lidar, inertial, and visual fusion using simultaneous localization and mapping (SLAM) algorithm was proposed to solve the problem of localization and mapping for vehicles in such open, bumpy, and Global Positioning System (GPS)-denied field environments. In this method, a joint lidar front end of pose estimation and correction was designed using the Super4PCS, Iterative Closest Point (ICP), and Normal Distributions Transform (NDT) algorithms and their variants. The algorithm can balance localization accuracy and real-time performance by carrying out lower-frequency pose correction based on higher-frequency pose estimation. Experimental results from the complex field environment show that, compared with LVI-SAM, the proposed method can reduce the translational error of localization by about 4.7% and create a three-dimensional point cloud map of the environment in real time, realizing the high-precision and high-robustness localization and mapping of the vehicle in complex field environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Asghar, R., Garzon, M., Lussereau, J., and Laugier, C. (August, January 31). Vehicle localization based on visual lane marking and topological map matching. Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France.

2. Yeong, D.J., Velasco-Hernandez, G., Barry, J., and Walsh, J. (2021). Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review. Sensors, 21.

3. Afia, A.B., Escher, A.-C., and Macabiau, C. (2015, January 14–18). A low-cost gnss/imu/visual monoslam/wss integration based on federated kalman filtering for navigation in urban environments. Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2015), Tampa, FL, USA.

4. Autonomous vans—The planning process of transport tasks;Nieoczym;Open Eng.,2020

5. Research of basic issues of autonomous mobility;Bartuska;Transp. Res. Procedia,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PVE-LIOM: Pseudo-Visual Enhanced LiDAR-Inertial Odometry and Mapping;IEEE Transactions on Instrumentation and Measurement;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3