DSW-YOLOv8n: A New Underwater Target Detection Algorithm Based on Improved YOLOv8n

Author:

Liu Qiang1ORCID,Huang Wei12,Duan Xiaoqiu1,Wei Jianghao1,Hu Tao1,Yu Jie1,Huang Jiahuan1

Affiliation:

1. The School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China

2. Hubei Provincial Key Laboratory of Intelligent Robots, Wuhan Institute of Technology, Wuhan 430205, China

Abstract

Underwater target detection is widely used in various applications such as underwater search and rescue, underwater environment monitoring, and marine resource surveying. However, the complex underwater environment, including factors such as light changes and background noise, poses a significant challenge to target detection. We propose an improved underwater target detection algorithm based on YOLOv8n to overcome these problems. Our algorithm focuses on three aspects. Firstly, we replace the original C2f module with Deformable Convnets v2 to enhance the adaptive ability of the target region in the convolution check feature map and extract the target region’s features more accurately. Secondly, we introduce SimAm, a non-parametric attention mechanism, which can deduce and assign three-dimensional attention weights without adding network parameters. Lastly, we optimize the loss function by replacing the CIoU loss function with the Wise-IoU loss function. We named our new algorithm DSW-YOLOv8n, which is an acronym of Deformable Convnets v2, SimAm, and Wise-IoU of the improved YOLOv8n(DSW-YOLOv8n). To conduct our experiments, we created our own dataset of underwater target detection for experimentation. Meanwhile, we also utilized the Pascal VOC dataset to evaluate our approach. The mAP@0.5 and mAP@0.5:0.95 of the original YOLOv8n algorithm on underwater target detection were 88.6% and 51.8%, respectively, and the DSW-YOLOv8n algorithm mAP@0.5 and mAP@0.5:0.95 can reach 91.8% and 55.9%. The original YOLOv8n algorithm was 62.2% and 45.9% mAP@0.5 and mAP@0.5:0.95 on the Pascal VOC dataset, respectively. The DSW-YOLOv8n algorithm mAP@0.5 and mAP@0.5:0.95 were 65.7% and 48.3%, respectively. The number of parameters of the model is reduced by about 6%. The above experimental results prove the effectiveness of our method.

Funder

Hubei Province Science and Technology Innovation Talents Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3