Underwater Small Target Detection Based on YOLOX Combined with MobileViT and Double Coordinate Attention

Author:

Sun Yan1,Zheng Wenxi1ORCID,Du Xue2,Yan Zheping2

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

2. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

The underwater imaging environment is complex, and the application of conventional target detection algorithms to the underwater environment has yet to provide satisfactory results. Therefore, underwater optical image target detection remains one of the most challenging tasks involved with neighborhood-based techniques in the field of computer vision. Small underwater targets, dispersion, and sources of distortion (such as sediment and particles) often render neighborhood-based techniques insufficient, as existing target detection algorithms primarily focus on improving detection accuracy and enhancing algorithm complexity and computing power. However, excessive extraction of deep-level features leads to the loss of small targets and decrease in detection accuracy. Moreover, most underwater optical image target detection is performed by underwater unmanned platforms, which have a high demand of algorithm lightweight requirements due to the limited computing power of the underwater unmanned platform with the mobile vision processing platform. In order to meet the lightweight requirements of the underwater unmanned platform without affecting the detection accuracy of the target, we propose an underwater target detection model based on mobile vision transformer (MobileViT) and YOLOX, and we design a new coordinate attention (CA) mechanism named a double CA (DCA) mechanism. This model utilizes MobileViT as the algorithm backbone network, improving the global feature extraction ability of the algorithm and reducing the amount of algorithm parameters. The double CA (DCA) mechanism can improve the extraction of shallow features as well as the detection accuracy, even for difficult targets, using a minimum of parameters. Research validated in the Underwater Robot Professional Contest 2020 (URPC2020) dataset revealed that this method has an average accuracy rate of 72.00%. In addition, YOLOX’s ability to compress the model parameters by 49.6% efficiently achieves a balance between underwater optical image detection accuracy and parameter quantity. Compared with the existing algorithm, the proposed algorithm can carry on the underwater unmanned platform better.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3