Meander-DGS Effect on Electromagnetic Bandgap Structure for Power/Ground Noise Suppression in High-Speed Integrated Circuit Packages and PCBs

Author:

Kim MyunghoiORCID

Abstract

In this paper, we present the impact of a meander-shaped defected ground structure (MDGS) on the slow-wave characteristics of a lowest-order passband and a low cutoff frequency of the first stopband of an electromagnetic bandgap (EBG) structure for power/ground noise suppression in high-speed integrated circuit packages and printed circuit boards (PCBs). A semi-analytical method is presented to rigorously analyze the MDGS effect. In the analytical method, a closed-form expression for a low cutoff frequency of the MDGS-EBG structure is extracted with an effective characteristic impedance and a slow-wave factor. The proposed analytical method enables the fast analysis of the MDGS-EBG structure so that it can be easily optimized. The analysis of the MDGS effect revealed that the low cutoff frequency increases up to approximately 19% while comparing weakly and strongly coupled MDGSs. It showed that the miniaturization of the MDGS-EBG structure can be achieved. It was experimentally verified that the low cutoff frequency is reduced from 2.54 GHz to 2.00 GHz by decreasing the MDGS coupling coefficient, which is associated with the miniaturization of the MDGS-EBG structure in high-speed packages and PCBs.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Routing Aspects in PCB Design for High Frequency Circuits;2022 IEEE 28th International Symposium for Design and Technology in Electronic Packaging (SIITME);2022-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3