Evaluation of Low-Frequency Noise in MOSFETs Used as a Key Component in Semiconductor Memory Devices

Author:

Teramoto AkinobuORCID

Abstract

Methods for evaluating low-frequency noise, such as 1/f noise and random telegraph noise, and evaluation results are described. Variability and fluctuation are critical in miniaturized semiconductor devices because signal voltage must be reduced in such devices. Especially, the signal voltage in multi-bit memories must be small. One of the most serious issues in metal-oxide-semiconductor field-effect-transistors (MOSFETs) is low-frequency noise, which occurs when the signal current flows at the interface of different materials, such as SiO2/Si. Variability of low-frequency noise increases with MOSFET shrinkage. To assess the effect of this noise on MOSFETs, we must first understand their characteristics statistically, and then, sufficient samples must be accurately evaluated in a short period. This study compares statistical evaluation methods of low-frequency noise to the trend of conventional evaluation methods, and this study’s findings are presented.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference88 articles.

1. Design of ion-implanted MOSFET's with very small physical dimensions

2. Cramming More Components Onto Integrated Circuits

3. Flash Memory Integration -Performance and Energy Considerations;Boukhbza,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Label-free GaN HEMT-based biosensing platform for interferon-γ detection;Materials Science in Semiconductor Processing;2024-08

2. Characterization of larger-single-Lorentzian noise deviated from 1/f characteristics detected by a power-spectral-density-integration method;Japanese Journal of Applied Physics;2024-03-01

3. Low‐frequency noise model development of MoS2 field effect transistor and its analysis with respect to different traps;International Journal of Numerical Modelling: Electronic Networks, Devices and Fields;2023-12-12

4. RTS Noise Characterization of Trap Properties in InGaAs nFinFETs;IEEE Transactions on Electron Devices;2023-07

5. A Unified Framework to Explain Random Telegraph Noise Complexity in MOSFETs and RRAMs;2023 IEEE International Reliability Physics Symposium (IRPS);2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3