Energy Efficiency Maximization for Hybrid-Powered 5G Networks with Energy Cooperation

Author:

Cao Yang,Zhong YeORCID,Peng Xiaofeng,Pan Song

Abstract

The extensive deployment of 5G cellular networks causes increased energy consumption and interference in systems, and to address this problem, this paper investigates the optimization problem of joint energy harvesting and energy cooperation to maximize energy efficiency (EE). First, considering user equipment (UE) quality of service (QoS) constraints, cellular base station power constraints, and renewable energy harvesting constraints, we construct a mixed-integer nonlinear programming problem for joint resource allocation. This problem is difficult to solve directly, thus we combine the fixed-variable method to solve the complex original problem in three less difficult subproblems of user association, power allocation, and energy cooperation by solving them separately using Lagrangian method, improved particle swarm optimization algorithm, and matching theory, respectively. Finally, the final solution to the original problem is obtained by combining the above three algorithms through convergent iterative algorithms. The simulation results show that the joint algorithm proposed in this paper has a better performance in throughput and energy efficiency compared with the comparison algorithms.

Funder

Education Commission fundation of Chongqing

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3