IoDM: A Study on a IoT-Based Organizational Deception Modeling with Adaptive General-Sum Game Competition

Author:

Seo SangORCID,Kim DohoonORCID

Abstract

Moving target defense (MTD) and decoy strategies, measures of active defense, were introduced to secure both the proactive security and reactive adaptability of internet-of-things (IoT) networks that have been explosively applied to various industries without any strong security measures and to mitigate the side effects of threats. However, the existing MTD and decoy strategies are limited to avoiding the attacker’s reconnaissance and initial intrusion attempts through simple structural mutations or inducing the attackers to a static trap based on the deceptive path and lack approaches to adaptively optimize IoT in consideration of the unique characteristic information by the domain of IoT. Game theory-based and decoy strategies are other options; however, they do not consider the dynamicity and uncertainty of the decision-making stages by the organizational agent related to the IoT domains. Therefore, in this paper, we present a type of organizational deception modeling, namely IoT-based organizational deception modeling (IoDM), which considers both the dynamic topologies and organizational business fingerprints customized in the IoT domain and operational purpose. For this model, we considered the practical scalability of the existing IoT-enabled MTD and decoy concepts and formulated the partially incomplete deceptive decision-making modeling for the cyber-attack and defense competition for IoT in real-time based on the general-sum game. According to our experimental results, the efficiency of the deceptive defense of the IoT defender could be improved by 70% on average while deriving the optimal defense cost compared to the increased defense performance. The findings of this study will improve the deception performances of MTD and decoy strategies by IoT scenarios related to various operational domains such as smart home networks, industrial networks, and medical networks. To the best of our knowledge, this study has employed social-engineering IoT knowledge and general-sum game theory for the first time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3