Abstract
Currently, in the field of military modernization, tactical networks using advanced unmanned aerial vehicle systems, such as drones, place an emphasis on proactively preventing operational limiting factors produced by cyber-electronic warfare threats and responding to them. This characteristic has recently been highlighted as a key concern in the functioning of modern network-based combat systems in research on combat effect analysis. In this paper, a novel discrete-event-system-specification-based cyber-electronic warfare M&S (D-CEWS) was first proposed as an integrated framework for analyzing communication effects and engagement effects on cyber-electronic warfare threats and related countermeasures that may occur within drones. Accordingly, for the first time, based on communication metrics in tactical ad hoc networks, an analysis was conducted on the engagement effect of blue forces by major wireless threats, such as multi-layered jamming, routing attacks, and network worms. In addition, the correlations and response logics between competitive agents were also analyzed in order to recognize the efficiency of mutual engagements between them based on the communication system incapacitation scenarios for diverse wireless threats. As a result, the damage effect by the cyber-electronic warfare threat, which could not be considered in the existing military M&S, could be calculated according to the PDR (packet delivery ratio) and related malicious pool rate change in the combat area, and the relevance with various threats by a quantifiable mission attribute given to swarming drones could also be additionally secured.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献