IMapC: Inner MAPping Combiner to Enhance the Performance of MapReduce in Hadoop

Author:

Kavitha C.ORCID,Srividhya S. R.ORCID,Lai Wen-ChengORCID,Mani Vinodhini

Abstract

Hadoop is a framework for storing and processing huge amounts of data. With HDFS, large data sets can be managed on commodity hardware. MapReduce is a programming model for processing vast amounts of data in parallel. Mapping and reducing can be performed by using the MapReduce programming framework. A very large amount of data is transferred from Mapper to Reducer without any filtering or recursion, resulting in overdrawn bandwidth. In this paper, we introduce an algorithm called Inner MAPping Combiner (IMapC) for the map phase. This algorithm in the Mapper combines the values of recurring keys. In order to test the efficiency of the algorithm, different approaches were tested. According to the test, MapReduce programs that are implemented with the Default Combiner (DC) of IMapC will be 70% more efficient than those that are implemented without one. To make computations significantly faster, this work can be combined with MapReduce.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3