Affiliation:
1. Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
Abstract
Currently, most network intrusion detection systems (NIDSs) use information about an entire session to detect intrusion, which has the fatal disadvantage of delaying detection. To solve this problem, studies have been proposed to detect intrusions using only some packets belonging to the session but have limited effectiveness in increasing the detection performance compared to conventional methods. In addition, space complexity is high because all packets used for classification must be stored. Therefore, we propose a novel NIDS that requires low memory storage space and exhibits high detection performance without detection delay. The proposed method does not need to store packets for the current session and uses only some packets, as in conventional methods, but achieves very high detection performance. Through experiments, it was confirmed that the proposed NIDS uses only a small memory of 25.8% on average compared to existing NIDSs by minimizing memory consumption for feature creation, while its intrusion detection performance is equal to or higher than those of existing ones. As a result, this method is expected to significantly help increase network safety by overcoming the disadvantages of machine-learning-based NIDSs using existing sessions and packets.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献