ELM-KL-LSTM: a robust and general incremental learning method for efficient classification of time series data

Author:

Zhou Qiao12,Wang Zhong-Yi123,Huang Lan12

Affiliation:

1. College of Information and Electrical Engineering, China Agricultural University, Beijing, China

2. Ministry of Agriculture, Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Beijing, China

3. Ministry of Education, Key Laboratory of Modern Precision Agriculture System Integration Research, Beijing, China

Abstract

Efficiently analyzing and classifying dynamically changing time series data remains a challenge. The main issue lies in the significant differences in feature distribution that occur between old and new datasets generated constantly due to varying degrees of concept drift, anomalous data, erroneous data, high noise, and other factors. Taking into account the need to balance accuracy and efficiency when the distribution of the dataset changes, we proposed a new robust, generalized incremental learning (IL) model ELM-KL-LSTM. Extreme learning machine (ELM) is used as a lightweight pre-processing model which is updated using the new designed evaluation metrics based on Kullback-Leibler (KL) divergence values to measure the difference in feature distribution within sliding windows. Finally, we implemented efficient processing and classification analysis of dynamically changing time series data based on ELM lightweight pre-processing model, model update strategy and long short-term memory networks (LSTM) classification model. We conducted extensive experiments and comparation analysis based on the proposed method and benchmark methods in several different real application scenarios. Experimental results show that, compared with the benchmark methods, the proposed method exhibits good robustness and generalization in a number of different real-world application scenarios, and can successfully perform model updates and efficient classification analysis of incremental data with varying degrees improvement of classification accuracy. This provides and extends a new means for efficient analysis of dynamically changing time-series data.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Computer Science

Reference69 articles.

1. Research of the extreme learning machine as incremental learning;Abramova Elena,2022

2. Methods for incremental learning: a survey;Ade;International Journal of Data Mining & Knowledge Management Process,2013

3. A fuzzy-wavelet method for analyzing non-stationary time series;Ademola,2004

4. A review of advances in extreme learning machine techniques and its applications;Alade,2018

5. A state-of-the-art survey on deep learning theory and architectures;Alom;Electronics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3