How to Prevent Drivers before Their Sleepiness Using Deep Learning-Based Approach

Author:

Akrout Belhassen12ORCID,Fakhfakh Sana32ORCID

Affiliation:

1. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia

2. Multimedia Information Systems and Advanced Computing Laboratory (MIRACL), Sfax University, Sfax 3021, Tunisia

3. Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia

Abstract

Drowsy driving causes many accidents. Driver alertness and automobile control are challenged. Thus, a driver drowsiness detection system is becoming a necessity. In fact, invasive approaches that analyze electroencephalography signals with head electrodes are inconvenient for drivers. Other non-invasive fatigue detection studies focus on yawning or eye blinks. The analysis of several facial components has yielded promising results, but it is not yet enough to predict hypovigilance. In this paper, we propose a “non-invasive” approach based on a deep learning model to classify vigilance into five states. The first step is using MediaPipe Face Mesh to identify the target areas. This step calculates the driver’s gaze and eye state descriptors and the 3D head position. The detection of the iris area of interest allows us to compute a normalized image to identify the state of the eyes relative to the eyelids. A transfer learning step by the MobileNetV3 model is performed on the normalized images to extract more descriptors from the driver’s eyes. Our LSTM network entries are vectors of the previously calculated features. Indeed, this type of learning allows us to determine the state of hypovigilance before it arrives by considering the previous learning steps, classifying the levels of vigilance into five categories, and alerting the driver before the state of hypovigilance’s arrival. Our experimental study shows a 98.4% satisfaction rate compared to the literature. In fact, our experimentation begins with the hyperparameter preselection to improve our results.

Funder

Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3