A Driver Face Monitoring System for Fatigue and Distraction Detection

Author:

Sigari Mohamad-Hoseyn1ORCID,Fathy Mahmood2,Soryani Mohsen2

Affiliation:

1. Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14399, Iran

2. Computer Engineering Department, Iran University of Science and Technology, Tehran 16846, Iran

Abstract

Driver face monitoring system is a real-time system that can detect driver fatigue and distraction using machine vision approaches. In this paper, a new approach is introduced for driver hypovigilance (fatigue and distraction) detection based on the symptoms related to face and eye regions. In this method, face template matching and horizontal projection of top-half segment of face image are used to extract hypovigilance symptoms from face and eye, respectively. Head rotation is a symptom to detect distraction that is extracted from face region. The extracted symptoms from eye region are (1) percentage of eye closure, (2) eyelid distance changes with respect to the normal eyelid distance, and (3) eye closure rate. The first and second symptoms related to eye region are used for fatigue detection; the last one is used for distraction detection. In the proposed system, a fuzzy expert system combines the symptoms to estimate level of driver hypo-vigilance. There are three main contributions in the introduced method: (1) simple and efficient head rotation detection based on face template matching, (2) adaptive symptom extraction from eye region without explicit eye detection, and (3) normalizing and personalizing the extracted symptoms using a short training phase. These three contributions lead to develop an adaptive driver eye/face monitoring. Experiments show that the proposed system is relatively efficient for estimating the driver fatigue and distraction.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3