Tracking vigilance fluctuations in real-time: a sliding-window heart rate variability-based machine-learning approach

Author:

Xie Tian1,Ma Ning1ORCID

Affiliation:

1. Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University , Guangzhou , China

Abstract

Abstract Study Objectives Heart rate variability (HRV)-based machine learning models hold promise for real-world vigilance evaluation, yet their real-time applicability is limited by lengthy feature extraction times and reliance on subjective benchmarks. This study aimed to improve the objectivity and efficiency of HRV-based vigilance evaluation by associating HRV and behavior metrics through a sliding window approach. Methods Forty-four healthy adults underwent psychomotor vigilance tasks under both well-rested and sleep-deprived conditions, with simultaneous electrocardiogram recording. A sliding-window approach (30 seconds length, 10 seconds step) was used for HRV feature extraction and behavior assessment. Repeated-measures ANOVA was used to examine how HRV related to objective vigilance levels. Stability selection technique was applied for feature selection, and the vigilance ground truth—high (fastest 40%), intermediate (middle 20%), and low (slowest 40%)—was determined based on each participant’s range of performance. Four machine-learning classifiers—k-nearest neighbors, support vector machine (SVM), AdaBoost, and random forest—were trained and tested using cross-validation. Results Fluctuated vigilance performance indicated pronounced state instability, particularly after sleep deprivation. Temporary decrements in performance were associated with a decrease in heart rate and an increase in time-domain heart rate variability. SVM achieved the best performance, with a cross-validated accuracy of 89% for binary classification of high versus low vigilance epochs. Overall accuracy dropped to 72% for three-class classification in leave-one-participant-out cross-validation, but SVM maintained a precision of 84% in identifying low-vigilance epochs. Conclusions Sliding-window-based HRV metrics would effectively capture the fluctuations in vigilance during task execution, enabling more timely and accurate detection of performance decrement.

Funder

Guangdong Basic and Applied Basic Research Foundation, China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3