A Compact and Powerful Single-Stage Network for Multi-Person Pose Estimation

Author:

Xiao Yabo1,Wang Xiaojuan1,He Mingshu1ORCID,Jin Lei1ORCID,Song Mei1,Zhao Jian23

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, No.10, Xitucheng Road, Haidian District, Beijing 100876, China

2. Institute of North Electronic Equipment, Beijing 100191, China

3. Department of Mathematics and Theories, Peng Cheng Laboratory, Shenzhen 518055, China

Abstract

Multi-person pose estimation generally follows top-down and bottom-up paradigms. The top-down paradigm detects all human boxes and then performs single-person pose estimation on each ROI. The bottom-up paradigm locates identity-free keypoints and then groups them into individuals. Both of them use an extra stage to build the relationship between human instance and corresponding keypoints (e.g., human detection in a top-down manner or a grouping process in a bottom-up manner). The extra stage leads to a high computation cost and a redundant two-stage pipeline. To address the above issue, we introduce a fine-grained body representation method. Concretely, the human body is divided into several local parts and each part is represented by an adaptive point. The novel body representation is able to sufficiently encode the diverse pose information and effectively model the relationship between human instance and corresponding keypoints in a single-forward pass. With the proposed body representation, we further introduce a compact single-stage multi-person pose regression network, called AdaptivePose++, which is the extended version of AAAI-22 paper AdaptivePose. During inference, our proposed network only needs a single-step decode operation to estimate the multi-person pose without complex post-processes and refinements. Without any bells and whistles, we achieve the most competitive performance on representative 2D pose estimation benchmarks MS COCO and CrowdPose in terms of accuracy and speed. In particular, AdaptivePose++ outperforms the state-of-the-art SWAHR-W48 and CenterGroup-W48 by 3.2 AP and 1.4 AP on COCO mini-val with faster inference speed. Furthermore, the outstanding performance on 3D pose estimation datasets MuCo-3DHP and MuPoTS-3D further demonstrates its effectiveness and generalizability on 3D scenes.

Funder

National Nature Fund

Young Elite Scientist Sponsorship Program of China Association for Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3