Image-Based Pothole Detection Using Multi-Scale Feature Network and Risk Assessment

Author:

Heo Dong-Hoe1ORCID,Choi Ji-Yoon1,Kim Sang-Baeg2,Tak Tae-Oh1,Zhang Sheng-Peng1ORCID

Affiliation:

1. Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon City 24341, Gangwon-do, Republic of Korea

2. Kai Networks Corporation, Suwon City 16463, Gyoenggi-do, Republic of Korea

Abstract

Potholes on road surfaces pose a serious hazard to vehicles and passengers due to the difficulty detecting them and the short response time. Therefore, many government agencies are applying various pothole-detection algorithms for road maintenance. However, current methods based on object detection are unclear in terms of real-time detection when using low-spec hardware systems. In this study, the SPFPN-YOLOv4 tiny was developed by combining spatial pyramid pooling and feature pyramid network with CSPDarknet53-tiny. A total of 2665 datasets were obtained via data augmentation, such as gamma regulation, horizontal flip, and scaling to compensate for the lack of data, and were divided into training, validation, and test of 70%, 20%, and 10% ratios, respectively. As a result of the comparison of YOLOv2, YOLOv3, YOLOv4 tiny, and SPFPN-YOLOv4 tiny, the SPFPN-YOLOv4 tiny showed approximately 2–5% performance improvement in the mean average precision (intersection over union = 0.5). In addition, the risk assessment based on the proposed SPFPN-YOLOv4 tiny was calculated by comparing the tire contact patch size with pothole size by applying the pinhole camera and distance estimation equation. In conclusion, we developed an end-to-end algorithm that can detect potholes and classify the risks in real-time using 2D pothole images.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3