Abstract
Pulse-Wave Doppler (PWD) ultrasound has been applied to the detection of blood flow for a long time; recently the same method was also proven effective in the monitoring of industrial fluids and suspensions flowing in pipes. In a PWD investigation, bursts of ultrasounds at 0.5–10 MHz are periodically transmitted in the medium under test. The received signal is amplified, sampled at tens of MHz, and digitally processed in a Field Programmable Gate Array (FPGA). First processing step is a coherent demodulation. Unfortunately, the weak echoes reflected from the fluid particles are received together with the echoes from the high-reflective pipe walls, whose amplitude can be 30–40 dB higher. This represents a challenge for the input dynamics of the system and the demodulator, which should clearly detect the weak fluid signal while not saturating at the pipe wall components. In this paper, a numerical demodulator architecture is presented capable of auto-tuning its internal dynamics to adapt to the feature of the actual input signal. The proposed demodulator is integrated into a system for the detection of the velocity profile of fluids flowing in pipes. Simulations and experiments with the system connected to a flow-rig show that the data-adaptive demodulator produces a noise reduction of at least of 20 dB with respect to different approaches, and recovers a correct velocity profile even when the input data are sampled at 8 bits only instead of the typical 12–16 bits.
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献