FPGA-Based Pulse Compressor for Ultra Low Latency Visible Light Communications

Author:

Ricci StefanoORCID,Caputo StefanoORCID,Mucchi LorenzoORCID

Abstract

Visible Light Communication (VLC) represents an emerging technology where a short-range data connection is obtained by modulating the energy radiated by Light Emitting Diodes (LEDs) at frequencies from a few kHz up to hundreds of MHz. The bandwidth/distance performance of such links is a compromise related to the available Signal-to-Noise ratio (SNR). At present, VLC links with bandwidth beyond the Gb/s and distance limited to a few cm or distances up to 100 m but data rates of a few kb/s have been demonstrated. Chirp coding with pulse compression is a well-known technique capable of recovering useful data from low SNR signals, widely employed, for example, in radar. In spite of the possible advantages, its application in VLC has never been investigated. Unfortunately, the pulse compressor is quite calculation-intensive, and only devices like Field-Programmable-Gate-Arrays (FPGAs) can support a low-latency real-time implementation. In this paper we demonstrate a real-time VLC link based on chirp coding and pulse compression coded in FPGA. For example, a chirp with bandwidth and length of 1.7 MHz and 17.92 µs, respectively, is demonstrated to support a link at 1.56 Mb/s over 2.8 m distance and a latency below 40 µs. Moreover, the communication-distance increase achievable by chirps of increasing temporal length is demonstrated and compared to the theoretical background.

Funder

Ministry of Education, University and Research (MIUR) of the Italian government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference34 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3