Hyperspectral Image Classification Using Parallel Autoencoding Diabolo Networks on Multi-Core and Many-Core Architectures

Author:

Torti EmanueleORCID,Fontanella Alessandro,Plaza Antonio,Plaza Javier,Leporati Francesco

Abstract

One of the most important tasks in hyperspectral imaging is the classification of the pixels in the scene in order to produce thematic maps. This problem can be typically solved through machine learning techniques. In particular, deep learning algorithms have emerged in recent years as a suitable methodology to classify hyperspectral data. Moreover, the high dimensionality of hyperspectral data, together with the increasing availability of unlabeled samples, makes deep learning an appealing approach to process and interpret those data. However, the limited number of labeled samples often complicates the exploitation of supervised techniques. Indeed, in order to guarantee a suitable precision, a large number of labeled samples is normally required. This hurdle can be overcome by resorting to unsupervised classification algorithms. In particular, autoencoders can be used to analyze a hyperspectral image using only unlabeled data. However, the high data dimensionality leads to prohibitive training times. In this regard, it is important to realize that the operations involved in autoencoders training are intrinsically parallel. Therefore, in this paper we present an approach that exploits multi-core and many-core devices in order to achieve efficient autoencoders training in hyperspectral imaging applications. Specifically, in this paper, we present new OpenMP and CUDA frameworks for autoencoder training. The obtained results show that the CUDA framework provides a speed-up of about two orders of magnitudes as compared to an optimized serial processing chain.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3