Feasibility of a Stochastic Collaborative Beamforming for Long Range Communications in Wireless Sensor Networks

Author:

Navarro-Camba Enrique,Felici-Castell Santiago,Segura-García Jaume,García-Pineda Miguel,Pérez-Solano Juan

Abstract

Wireless Sensor Networks (WSNs) is a group of spatially dispersed autonomous sensor devices, named motes. These motes have a microcontroller, sensors, are powered by AA or AAA batteries, and mainly have the ability to communicate using the IEEE 802.15.4 standard. The motes communicate between them inside the WSN exchanging packets using a multi-hop routing. They use a very low amount of power (below 100 mW). This limits the maximum communication distance between motes within the WSN. Usually, one mote acts as a gateway to other networks and this mote is also called sink or simply Base Station (BS), and the data collected by the sensors of each mote are sent to this mote. The maximum distance between the BS and the nearest mote is below 100 m because of the power limitations of the motes. If the WSN-BS distance is above this boundary, the communication will surely fail. We propose a new technique in order to achieve a long range communication from the WSN, for instance to communicate to a Low Earth Orbit (LEO) satellite. Many proposals in the literature based on Collaborative Beamforming (CB), also known as Distributed or Cooperative Beamforming, for these long range communications are found, however the synchronization of clocks is an almost impossible task given the simplicity and cheapness of the architecture of the motes. To overcome this problem, we propose a new technique, named Stochastic Collaborative Beamforming (SCB), in which we take advantage of the synchronization errors of the clocks. In SCB, it is possible to obtain the adequate time delay that permits the interference or sufficient gain in the direction of the receiver. This gain is obtained from interfering independent signals coming from each mote of the WSN, using a repetition scheme. Although it does not get all the nominal gain that could be obtained in case of a perfect synchronization, it does get a sufficient gain to reach the BS with limited power consumption.

Funder

Universitat de València

Generalitat Valenciana

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3