Relay Selection for Over-the-Air Computation Achieving Both Long Lifetime and High Reliability

Author:

Zhou Jingyang1,Tang Suhua1ORCID

Affiliation:

1. Department of Computer and Network Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan

Abstract

In a general wireless sensor network, a sink node collects data from each node successively and then post-processes the data to obtain useful information. However, conventional methods have a scalability problem: the data collection/processing time increases with the number of nodes, and frequent transmission collisions degrade spectrum efficiency. If only statistical values of the data are needed, using over-the-air computation (AirComp) can efficiently perform data collection and computation. However, AirComp also has its problems: when the channel gain of a node is too low, (i) the transmission power of that node will be high, decreasing the lifetime of that node and the entire network, and (ii) sometimes, the computation error still occurs even though the maximal transmission power is used. To jointly solve these two problems, in this paper we investigate the relay communication for AirComp and study a relay selection protocol. The basic method selects an ordinary node with a good channel condition as a relay node, considering both computation error and power consumption. This method is further enhanced to explicitly consider network lifetime in relay selection. Extensive simulation evaluations confirm that the proposed method helps to prolong the lifetime of the entire network and reduce computation errors as well.

Funder

SCAT Foundation, Japan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3