Abstract
Lane changing systems have consistently received attention in the fields of vehicular communication and autonomous vehicles. In this paper, we propose a lane change system that combines deep reinforcement learning and vehicular communication. A host vehicle, trying to change lanes, receives the state information of the host vehicle and a remote vehicle that are both equipped with vehicular communication devices. A deep deterministic policy gradient learning algorithm in the host vehicle determines the high-level action of the host vehicle from the state information. The proposed system learns straight-line driving and collision avoidance actions without vehicle dynamics knowledge. Finally, we consider the update period for the state information from the host and remote vehicles.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献