Weak Signal Extraction from Lunar Penetrating Radar Channel 1 Data Based on Local Correlation

Author:

Jia Zhuo,Liu SixinORCID,Zhang Ling,Hu BinORCID,Zhang Jianmin

Abstract

Knowledge of the subsurface structure not only provides useful information on lunar geology, but it also can quantify the potential lunar resources for human beings. The dual-frequency lunar penetrating radar (LPR) aboard the Yutu rover offers a Special opportunity to understand the subsurface structure to a depth of several hundreds of meters using a low-frequency channel (channel 1), as well as layer near-surface stratigraphic structure of the regolith using high-frequency observations (channel 2). The channel 1 data of the LPR has a very low signal-to-noise ratio. However, the extraction of weak signals from the data represents a problem worth exploring. In this article, we propose a weak signal extraction method in view of local correlation to analyze the LPR CH-1 data, to facilitate a study of the lunar regolith structure. First, we build a pre-processing workflow to increase the signal-to-noise ratio (SNR). Second, we apply the K-L transform to separate the horizontal signal and then use the seislet transform (ST) to reserve the continuous signal. Then, the local correlation map is calculated using the two denoising results and a time–space dependent weighting operator is constructed to suppress the noise residuals. The weak signal after noise suppression may provide a new reference for subsequent data interpretation. Finally, in combination with the regional geology and previous research, we provide some speculative interpretations of the LPR CH-1 data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3