Abstract
A directional borehole radar consists of one transmitting antenna in the borehole and four receiving antennas distributed at equal angles in a ring. The receiving antennas can determine the depth and orientation of targets beside the borehole. However, the problem of target orientation determination and 3D imaging algorithms remains a technological challenge. The MUSIC (multiple signal classification) algorithm requires a peak search, so the accuracy of the operation is limited by the angle interval. Based on the MUSIC algorithm, the Root-MUSIC algorithm is proposed and implemented. By replacing the spectral peak search with calculating the roots of the polynomials greatly improves the orientation recognition accuracy. Finally, the results obtained using the above algorithm are verified with synthetic data and compared with the results of the MUSIC algorithm. The results show that both the MUSIC algorithm and the Root-MUSIC algorithm can achieve very good orientation determination and 3D imaging results. In terms of accuracy, the Root-MUSIC algorithm has an obvious improvement compared with the MUSIC algorithm.
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献