Abstract
With the rapid increase in the number of wireless sensor terminals in smart grids, backscattering has become a very promising green technology. By means of backscattering, wireless sensors can either reflect energy signals in the environment to exchange information with each other or capture the energy signals to recharge their batteries. However, the changing environment around wireless sensors, limited radio frequency and various service priorities in uplink communications bring great challenges in allocation resources. In this paper, we put forward a backscatter communication model based on business priority and cognitive network. In order to achieve optimal throughput of system, an asynchronous advantage actor-critic (A3C) algorithm is designed to tackle the problem of uplink resource allocation. The experimental results indicate that the presented scheme can significantly enhance overall system performance and ensure the business requirements of high-priority users.
Funder
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献